BEFORE THE PUBLIC SERVICE COMMISSION OF SOUTH CAROLINA

DOCKET NO. 2011-271-E

<u>, </u>	
LLC for Authority to Adjust and Increase) JEFFRE	AL TESTIMONY OF CY R. BAILEY FOR RGY CAROLINAS, LLC

2	Q.	PLEASE STATE YOUR NAME, BUSINESS ADDRESS AND CURRENT
3		POSITION.
4	A.	My name is Jeffrey R. Bailey, and my business address is 1000 E. Main Street,
5		Plainfield, Indiana 46168. I am Director, Pricing and Analysis for Duke Energy
6		Carolinas, LLC ("Duke Energy Carolinas" or the "Company") and its affiliated
7		utility operating companies.
8	Q.	WHAT ARE YOUR RESPONSIBILITIES AS DIRECTOR, PRICING AND
9		ANALYSIS?
10	A.	My primary responsibility is to provide rate analysis and to develop the rates and
11		charges contained in tariffs and contracts for gas or electric service for Duke
12		Energy Corporation's ("Duke Energy") utility operating companies, including
13		Duke Energy Carolinas.
14	Q.	DID YOU PROVIDE DIRECT TESTIMONY IN THIS PROCEEDING?
15	A.	Yes. My education and experience are summarized in my direct testimony.
16	Q.	WHAT IS THE PURPOSE OF YOUR REBUTTAL TESTIMONY IN THIS
17		PROCEEDING?
18	A.	My rebuttal testimony will respond to the South Carolina Energy Users
19		Committee ("SCEUC") Witness O'Donnell with regard to coincident peak ("CP")
20		pricing, increased interruptible credits, the Company's proposed voltage discount
21		and the proposed increase allocated to the Company's Rate MP tariff.
22	Q.	PLEASE DESCRIBE THE EXHIBIT ATTACHED TO YOUR
23		TESTIMONY.

INTRODUCTION AND PURPOSE

1

1	A.	Bailey Rebuttal Exhibit 1 illustrates that the proposed increases to the rate
2		components of Rate MP are reasonable.
3	Q.	WAS BAILEY EXHIBIT 1 PREPARED BY YOU OR UNDER YOUR
4		SUPERVISION?
5	A.	Yes, it was.
6		II. RATE DESIGN AND TARIFF ISSUES
7		Coincident Peak Pricing ("CP")
8	Q.	PLEASE DESCRIBE THE CP RATE PROPOSED BY SCEUC WITNESS
9		O'DONNELL.
10	A.	In a typical industrial / commercial rate, the customer's maximum non-coincident
11		demand during the billing period is used as the basis for the billing of demand
12		charges. Or in the case of a time-of-use rate, the maximum demand during the
13		on-peak period is used for billing purposes. In the case of a coincident peak rate,
14		the customer's demand at the time of the utility's monthly system peak is used for
15		billing purposes.
16	Q.	WHAT CONCERNS DO YOU HAVE REGARDING THIS TYPE OF
17		RATE STRUCTURE?
18	A.	I acknowledge that these CP rates exist in the marketplace, however, it is my
19		judgment that such rates do not properly price the use of the Company's
20		generating resources and therefore frustrate cost causation rate design principles.
21		Further, a CP rate would conflict with other products in the Company's product
22		portfolio that are properly priced to influence peak demand reduction.
23	Q.	PLEASE ELABORATE.

1	A.	A CP rate as contemplated by Mr. O'Donnell is based on embedded costs, which
2		include all forms of generation from base load, intermediate, and peaking
3		capacity. An avoided cost rate is typically based upon the value of a combustion
4		turbine. The difference between these valuations is substantial, with the CP rate
5		credit for curtailability far exceeding the value of a combustion turbine.
6	Q.	WILL WITNESS O'DONNELL'S RECOMMENDATION DEFER THE
7		NEED FOR CAPACITY?
8	A.	A properly designed and priced peak reduction program will generally defer the
9		need for peaking capacity, not base load capacity. Where Witness O'Donnell's
10		argument falls short is his expectation that customers who respond to a CP rate,
11		and are able to curtail 20 to 30 hours per month, will defer the need for expensive,
12		base load generating capacity. In other words, Witness O'Donnell contends that
13		customers who utilize the Company's system better than 96% of the time will
14		defer generation designed to serve not only at peak times, but all of the other
15		hours of the year as well. This position does not comport with our experience.
16	Q.	MR. O'DONNELL RECOMMENDS ASSUMING PEAK LOAD
17		REDUCTIONS IN THE INITIAL DESIGN OF THE CP RATES. DO YOU
18		AGREE WITH THIS APPROACH?

No, I do not. This approach assumes value creation before any value is genuinely

created. The Company prefers to design rates based on experience with customer

19

20

A.

1		approach could create unreasonable subsidies for a subset of customers, and
2		increase the risk of free ridership where customers receive the benefit of lower
3		rates without shifting any load.
4	Q.	WHAT ARE YOUR CONCLUSTIONS REGARDING MR. O'DONNELL'S
5		CP RECOMMENDATIONS.
6	A.	My conclusion regarding Witness O'Donnell's recommendation is that it
7		produces an unreasonable subsidy to industrial customers that would not produce
8		the benefits claimed. I recommend that the CP rate proposals by Witness
9		O'Donnell be rejected.
10		Interruptible Credits
11	Q.	SCEUC WITNESS O'DONNELL FURTHER PROPOSES THAT DUKE
12		ENERGY CAROLINAS SHOULD INCREASE ITS CAPACITY-BASED
13		INTERRUPTIBLE CREDITS THROUGH ITS POWERSHARE
14		PROGRAMS TO BE BASED ON CURRENT AVOIDED COST TARIFF
15		RATES. IS THIS REASONABLE?
16	A.	Conceptually, the Company agrees with the idea of providing value to customers
17		in exchange for value received. In keeping with this principle, the Company bases
18		its avoided cost rates on the cost and optionality of a combustion turbine.
19		Because customers' participation in demand shifting programs generally cannot
20		fully duplicate the optionality of a combustion turbine, there should be some
21		discount relative to full avoided cost for programs with limited curtailability, like
22		PowerShare. The Company's Rate PP, cited by Mr. O'Donnell, is constructed
23		around the avoided cost of a combustion turbine, but to receive the full value of

1		the Company's avoided costs, the customer would have to consistently provide
2		kilowatt-hours ("kWh") during the course of the entire year.
3	Q.	WITNESS O'DONNELL ALSO SUGGESTS THAT A PROPOSED
4		INTERRUPTIBLE RATE BASED ON THE COMPANY'S AVOIDED
5		COST RATES SHOULD ALLOW CUSTOMERS TO CLAIM CREDITS
6		FOR INTERRUPTING THEMSELVES. PLEASE EXPLAIN THE
7		PROBLEMS WITH THIS CONCEPT.
8	A.	As I stated above, the Company has no opposition to conveying value to
9		customers in exchange for value received. However, of particular concern is Mr.
10		O'Donnell's comparison of a PowerShare 10/5 option that is predicated on 90
11		hours of curtailability versus his example that produces 250 hours. The two
12		products are not directly comparable because of the disparate hours. It makes
13		sense that a customer should be compensated more for additional curtailability.
14		The Company has put together products after extensive experience with
15		customers that suggest it is difficult for customers to interrupt beyond 200 hours.
16		A customer with 200 hours of curtailability is typically a customer whose
17		electricity costs are a substantial percentage of product cost (e.g., the steel
18		industry) that are typically much higher than most customers. Nonetheless, the
19		Company is considering offering a program next year that offers credits to
20		customers based on approximately 200 hours of curtailability. This product
21		enhancement will increase credits to customers in exchange for increased
22		curtailability

1		Time of Use Rates
2	Q.	MR. O'DONNELL SUGGESTS THAT THE COMPANY SHOULD OFFER
3		MORE ECONOMICAL TIME OF USE RATES TO TIE WITH ENERGY
4		EFFICIENCY PROGRAMS. HOW DO YOU RESPOND?
5	A	Mr. O'Donnell's recommendation does not provide enough specifics on which l
6		can comment. However, the Company is always receptive to dialogue with our
7		customers concerning rate structures that more fully reflect cost and convey
8		mutual value.
9		Voltage Discount
10	Q.	SCEUC WITNESS O'DONNELL RECOMMENDS THAT THE
11		COMPANY BE REQUIRED TO OFFER TO SELL TRANSFORMATION
12		EQUIPMENT AT NET BOOK VALUE (ORIGINAL PRICE LESS
13		DEPRECIATED VALUE) AND THEN OFFER THESE CUSTOMERS
14		THE SAME TRANSFORMATION DISCOUNT THE COMPANY IS NOW
15		PROPOSING TO OFFER NEW CUSTOMERS. HOW DO YOU
16		RESPOND?
17	A.	In my judgment, this recommendation is inappropriate. Witness O'Donnell's
18		recommendation would essentially result in confiscation of the Company's assets
19		at substantially less than the revenue stream generated by such assets. If the
20		Company ever engages in such a transaction, it should be at its discretion, and the
21		terms of sale should be arrived at through an arms-length negotiation with
22		appropriate consideration given to the regulated and / or market value of the
23		assets.

1	Q.	DO YOU AGREE THAT FAILURE TO OFFER THE VOLTAGE
2		DISCOUNT TO ALL POTENTIAL CUSTOMERS IS
3		DISCRIMINATORY?
4	A.	No, I do not. The Company has structured the offer as a pilot program so the
5		terms of the offer can be controlled and the service voltage, equipment, and
6		character of service the customer will receive are fully known. The information
7		we receive from the pilot could help us move toward more voltage differentiated
8		rates.
9		Rate MP Tariff
10	Q.	WITNESS O'DONNELL FURTHER STATES THAT THE COMMISSION
11		SHOULD DENY THE COMPANY'S REQUESTED INCREASE TO ITS
12		SCHEDULE MP TARIFF UNTIL SUCH TIME THAT DUKE ENERGY
13		CAROLINAS EXPLAINS THE CALCULATION OF THE RATE AND
14		JUSTIFIES THE INCREASE TO THIS PARTICULAR RATE CLASS
15		CAN YOU PLEASE DESCRIBE THE CALCULATION OF THE
16		INCREASE TO SCHEDULE MP AND WHY THE PROPOSED
17		INCREASE TO THIS RATE, AS WITH EVERY OTHER COMPANY
18		RATE SCHEDULE, IS JUSTIFIED?
19	A.	The method used to increase our commercial and industrial rates is what I refer to
20		as a "fixed cost recovery method." This applies the revenue deficiency (typically
21		fixed costs) to the existing structure after accounting for variable costs, and
22		applies it to the various rate components in the same relative proportions as

recovered under the existing rate. This keeps the revised structure the same in

23

terms of fixed cost recovery as the existing structure and avoids contributing any distortions to the rate¹. This same method has been used in all recent Duke Energy Carolinas' rate cases as a starting point prior to any design changes. More specifically to Rate MP, major components of Rate MP are derived from Rate OPT following its design, and the remaining demand charges are increased to fulfill the necessary revenues for the rate. Rate MP was designed to approximate the average increase to Rate OPT.

The Company re-filed Rate MP after correcting for an error in billing determinants that distorted the demand charges. These changes result in all current Rate MP customers receiving an increase at proposed rates of less than 14%, in line with Rate OPT. The Company has provided billing comparisons for Rate MP to the Office of Regulatory Staff confirming the rate impacts. This rate still provides benefit to participating Rate MP customers relative to Rate OPT.

Although I appreciate Mr. O'Donnell's concerns, the tables in his testimony do not reflect the class impacts. He fails to recognize that the increases shown in his table must be weighted by the revenue production for each rate component and summed to arrive at a reasonable approximation of the class impacts. For example, the 27.8% increased shown for on-peak demands each contribute approximately 1% increase to total rate schedule revenue production². Please see Bailey Rebuttal Exhibit 1 for further illustration. The calculations

_

¹ This method, among others, could be contrasted to an across-the-board increase where all components of the schedule are increased by the same percentage.

² For further illustration, assume that demand charges contribute 50% of the class revenue requirement. Assuming the increase is predominantly related to fixed costs, the attendant increase in the demand charges would be twice the average rate increase.

1		shown in this exhibit provide a more meaningful approximation of the true class
2		impacts.
3		III. <u>CONCLUSION</u>
4	Q.	DOES THIS CONCLUDE YOUR REBUTTAL TESTIMONY?
5	A.	Yes.

Duke Energy Carolinas LLC Docket No. 2011-271-E Proposed Billing Units and Revenue For the test year ended December 31, 2008 Present Rate Schedule Effective 02/01/09

	chedule MP(57,58) - Multiple Premises (Drocant Data	Tost Voor Dillin -	Drocont		Department Dillion	December	Componer	Data Inc
	Customers		Present Rate	Test Year Billing	Present		Proposed Billing	Proposed	Component	Rate Increa
EN			(10/1/2010)	Units	Revenue	Proposed Rate	Units	Revenue	Percent Increase	Contribution
1 Basic Facilities Ch	narge		36.21	696	25,203	40.61	580	23,555	12.15%	0
2	I									
3	Interconnected toTRANSMISSION									
5	Summer On-Peak Demand Charge									
6	Summer On-reak Demand Charge	All KW	11.96	25,145	300,729	15.2846	25,145	384,326	27.80%	1
7	Winter On-Peak Demand Charge	7	11.50	23,213	300,723	1512040	23,213	301,320	27.00%	•
8	Winter on Fear Bernand Charge	All Kw	6.81	40,915	278,629	8.7030	40,915	356,082	27.80%	1
9	Economy Demand	7 1	1.05	4,030	4,232	1.3460	4,030	5,424	28.19%	
10 Energy Charges	,			.,	.,		,,	-,		
11	On-Peak		0.055791	8,668,012	483,597	0.067463	8,668,012	584,773	14.75%	(
12	Off-Peak		0.02841	23,979,232	681,250	0.032359	23,979,232	775,940	3.02%	(
13										
14	Interconnected to DISTRIBUTION									
15 Energy Charges										
16	Summer On-Peak Demand Charge									
17		All KW	12.96	76,718	994,263	16.5626	76,718	1,270,648	27.80%	
18	Winter On-Peak Demand Charge									
19		All KW	7.81	128,162	1,000,941	9.9810	128,162	1,279,183	27.80%	:
20	Economy Demand		1.05	20,725	21,761	1.3460	20,725	27,896	28.19%	
21 Energy Charges										
22		On-Peak	0.055791	27,553,933	1,537,261	0.067463	27,553,933	1,858,881	14.75%	
23		Off-Peak	0.02841	90,509,804	2,571,384	0.032359	90,509,804	2,928,793	3.02%	
24	from Billing Units and Present Rates				7,899,251			9,495,502		1
26 Revenue adjuste 27	d for Spread Factor add rider adjustments ¹				7,858,849			9,446,935		
28 Adjustment for F			0.00300086	150,710,981	452,263					
29 Energy Efficien	cy Rider		na	150,710,981	0					
30 Energy Efficien	cy Rider (Energy Efficiency)		0	150,710,981	0					
31 Energy Efficien	cy Rider (Demand Response)		0	150,710,981	0					
32 DSM Revenue	Credit Adjustment Rider		0	150,710,981	0					
33 Pension Costs F	Rider		0	150,710,981	0					
34 Nuclear Insurar	nce Reserve Rider		0	150,710,981	0					
35 Equals Annualize	d Present Revenue				8,311,111					
36				-	,					
37 Proposed Revenu	ue(using spread factor)							9,446,935		
38 Revenue Increase	e (Decrease)							1,135,824		
39 Percent Revenue	Increase (Decrease)							13.67%	_	
40 Total Bills					696		580		-	
41 Total KWH					150,710,981		150,710,981		_	
42	Spread Factor Calculation									
43 Unadjusted Prese	ent Revenue				7,899,251					
44 add estimated pr	rice variance from Per Book ²				(184,647)					
45 less Credits (DSN	4)				0					
46 add FPP variance	e ³				0					
47 Equals estimated	l booked revenue				7,714,604					
48 Reported Booked				-	7,498,337					
49 less booked rider					176,809					
	booked revenue(base rates)				7,675,146					
	eported to Estimated)				0.9949					
									_	

- 53 ¹ Rider adjustments applicable to schedule
 54 (for a summary also see PSCSC Docket 2009-226-E, Order 2010-79)
- 55 ² Price variance is the difference in as billed and present revenue due to rate changes during the test year
- 56 ³ FPP variance is the difference between rate revenue and the fixed payment for customers on Fixed Payment Plan 57 (Per Book includes this difference)